for 30 images how many images in my classification dataset and how much "class images per instance
for 30 images how many images in my classification dataset and how much "class images per instance images" should i set it to?
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 14.76 GiB total capacity; 13.17 GiB already allocated; 7.75 MiB free; 13.46 GiB reserved in total by PyTorch Here is my training command: accelerate launch --num_cpu_threads_per_process=2 "./sdxl_train_network.py" --pretrained_model_name_or_path="stabilityai/stable-diffusion-xl-base-1.0" --train_data_dir="/kaggle/working/results/img" --reg_data_dir="/kaggle/working/results/reg" --resolution="1024,1024" --output_dir="/kaggle/working/results/model" --logging_dir="/kaggle/working/results/log" --network_alpha="1" --save_model_as=safetensors --network_module=networks.lora --text_encoder_lr=0.0004 --unet_lr=0.0004 --network_dim=32 --output_name="kaggle_glpr123" --lr_scheduler_num_cycles="8" --no_half_vae --learning_rate="0.0004" --lr_scheduler="constant" --train_batch_size="1" --max_train_steps="6400" --save_every_n_epochs="1" --mixed_precision="fp16" --save_precision="fp16" --cache_latents --optimizer_type="Adafactor" --optimizer_args scale_parameter=False relative_step=False warmup_init=False --max_data_loader_n_workers="0" --bucket_reso_steps=64 --full_fp16 --xformers --bucket_no_upscale --noise_offset=0.0 --lowram --max_grad_norm=0.0
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 14.76 GiB total capacity; 13.17 GiB already allocated; 7.75 MiB free; 13.46 GiB reserved in total by PyTorchaccelerate launch --num_cpu_threads_per_process=2 "./sdxl_train_network.py" --pretrained_model_name_or_path="stabilityai/stable-diffusion-xl-base-1.0" --train_data_dir="/kaggle/working/results/img" --reg_data_dir="/kaggle/working/results/reg" --resolution="1024,1024" --output_dir="/kaggle/working/results/model" --logging_dir="/kaggle/working/results/log" --network_alpha="1" --save_model_as=safetensors --network_module=networks.lora --text_encoder_lr=0.0004 --unet_lr=0.0004 --network_dim=32 --output_name="kaggle_glpr123" --lr_scheduler_num_cycles="8" --no_half_vae --learning_rate="0.0004" --lr_scheduler="constant" --train_batch_size="1" --max_train_steps="6400" --save_every_n_epochs="1" --mixed_precision="fp16" --save_precision="fp16" --cache_latents --optimizer_type="Adafactor" --optimizer_args scale_parameter=False relative_step=False warmup_init=False --max_data_loader_n_workers="0" --bucket_reso_steps=64 --full_fp16 --xformers --bucket_no_upscale --noise_offset=0.0 --lowram --max_grad_norm=0.0