9 Replies
@Apu
(2,1) and (0,0) ka perimeter with (t,4) would be $\sqrt{t^{2}+4}+\sqrt{(t-2)^{2}+9}+\sqrt{5}=\sqrt{t^{2}+4}+\sqrt{t^{2}-4t+13}+\sqrt{5}$, Now derivate that and do maxima-minima thingy?
SirLancelotDuLac

Derivating this and setting to zero gets you:
$\frac{t}{\sqrt{t^{2}+4}}+\frac{t-2}{\sqrt{t^{2}-4t+13}}=0$ which gives $t (\sqrt{t^{2}-4t+13}+\sqrt{t^{2}+4})=2\sqrt{t^{2}+4}$
SirLancelotDuLac

Wait I'm stuck myself lol.
oh okay

can y also explain ?
what have u done
@Monishrules