Straight Lines

Alpha im getting 4 abd Beta ke lie t=0 par hi to minimum hoga
No description
9 Replies
iTeachChem
iTeachChem4w ago
@Apu
SirLancelotDuLac
(2,1) and (0,0) ka perimeter with (t,4) would be $\sqrt{t^{2}+4}+\sqrt{(t-2)^{2}+9}+\sqrt{5}=\sqrt{t^{2}+4}+\sqrt{t^{2}-4t+13}+\sqrt{5}$, Now derivate that and do maxima-minima thingy?
TeXit
TeXit4w ago
SirLancelotDuLac
No description
SirLancelotDuLac
Derivating this and setting to zero gets you: $\frac{t}{\sqrt{t^{2}+4}}+\frac{t-2}{\sqrt{t^{2}-4t+13}}=0$ which gives $t (\sqrt{t^{2}-4t+13}+\sqrt{t^{2}+4})=2\sqrt{t^{2}+4}$
TeXit
TeXit4w ago
SirLancelotDuLac
No description
SirLancelotDuLac
Wait I'm stuck myself lol.
Real potato
Real potatoOP4w ago
oh okay
Monishrules
Monishrules4w ago
No description
Real potato
Real potatoOP4w ago
can y also explain ? what have u done @Monishrules

Did you find this page helpful?