accelerate launch --num_cpu_threads_per_process=2 "./sdxl_train_network.py" --pretrained_model_name_

accelerate launch --num_cpu_threads_per_process=2 "./sdxl_train_network.py" --pretrained_model_name_or_path="stabilityai/stable-diffusion-xl-base-1.0" --train_data_dir="/kaggle/working/results/img" --resolution="1024,1024" --output_dir="/kaggle/working/results/model" --logging_dir="/kaggle/working/results/log" --network_alpha="1" --save_model_as=safetensors --network_module=networks.lora --text_encoder_lr=0.0004 --unet_lr=0.0004 --network_dim=32 --output_name="kaggle_flower" --lr_scheduler_num_cycles="8" --no_half_vae --learning_rate="0.0004" --lr_scheduler="constant" --train_batch_size="1" --max_train_steps="1000" --save_every_n_epochs="1" --mixed_precision="fp16" --save_precision="fp16" --cache_latents --optimizer_type="Adafactor" --optimizer_args scale_parameter=False relative_step=False warmup_init=False --max_data_loader_n_workers="0" --bucket_reso_steps=64 --gradient_checkpointing --xformers --bucket_no_upscale --noise_offset=0.0 --lowram, are these settings too big?
Was this page helpful?