when completing training with dreambooth, why do we merge the trained model with the original model
when completing training with dreambooth, why do we merge the trained model with the original model used?


torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 14.76 GiB total capacity; 13.17 GiB already allocated; 7.75 MiB free; 13.46 GiB reserved in total by PyTorch Here is my training command: accelerate launch --num_cpu_threads_per_process=2 "./sdxl_train_network.py" --pretrained_model_name_or_path="stabilityai/stable-diffusion-xl-base-1.0" --train_data_dir="/kaggle/working/results/img" --reg_data_dir="/kaggle/working/results/reg" --resolution="1024,1024" --output_dir="/kaggle/working/results/model" --logging_dir="/kaggle/working/results/log" --network_alpha="1" --save_model_as=safetensors --network_module=networks.lora --text_encoder_lr=0.0004 --unet_lr=0.0004 --network_dim=32 --output_name="kaggle_glpr123" --lr_scheduler_num_cycles="8" --no_half_vae --learning_rate="0.0004" --lr_scheduler="constant" --train_batch_size="1" --max_train_steps="6400" --save_every_n_epochs="1" --mixed_precision="fp16" --save_precision="fp16" --cache_latents --optimizer_type="Adafactor" --optimizer_args scale_parameter=False relative_step=False warmup_init=False --max_data_loader_n_workers="0" --bucket_reso_steps=64 --full_fp16 --xformers --bucket_no_upscale --noise_offset=0.0 --lowram --max_grad_norm=0.0torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 14.76 GiB total capacity; 13.17 GiB already allocated; 7.75 MiB free; 13.46 GiB reserved in total by PyTorchaccelerate launch --num_cpu_threads_per_process=2 "./sdxl_train_network.py" --pretrained_model_name_or_path="stabilityai/stable-diffusion-xl-base-1.0" --train_data_dir="/kaggle/working/results/img" --reg_data_dir="/kaggle/working/results/reg" --resolution="1024,1024" --output_dir="/kaggle/working/results/model" --logging_dir="/kaggle/working/results/log" --network_alpha="1" --save_model_as=safetensors --network_module=networks.lora --text_encoder_lr=0.0004 --unet_lr=0.0004 --network_dim=32 --output_name="kaggle_glpr123" --lr_scheduler_num_cycles="8" --no_half_vae --learning_rate="0.0004" --lr_scheduler="constant" --train_batch_size="1" --max_train_steps="6400" --save_every_n_epochs="1" --mixed_precision="fp16" --save_precision="fp16" --cache_latents --optimizer_type="Adafactor" --optimizer_args scale_parameter=False relative_step=False warmup_init=False --max_data_loader_n_workers="0" --bucket_reso_steps=64 --full_fp16 --xformers --bucket_no_upscale --noise_offset=0.0 --lowram --max_grad_norm=0.0