Why is in this calculation the number of vectors added to the number of queries. Wouldn't it make mo
Why is in this calculation the number of vectors added to the number of queries. Wouldn't it make more sense to multiply them?

(stored vectors + queried vectors) * dimensionsgetByIds classed as a query with regards to billing?getByIds, i believe the max number of Ids is 20 from some testing but I can't find the documentation for it, will this limit be increased?getByIds(), track exactly what ids you have inserted, and at maximum fetch 20 ids.[ Object, Object ] as id to a vector index, so the only way I've to fix this is removing the entire vector (stored vectors + queried vectors) * dimensionsgetByIdsgetByIds{
\"count\":1,
\"matches\":[
{
\"id\":\"5b449757-7d4f-44ee-af26-05301ea5384c\",
\"namespace\":\"content_items\",
\"values\":[
0.025468263775110245,
<--THE REST OF THE VECTORS-->,
0.015441170893609524],
\"metadata\":{
\"data\":\"{
\\\"d1Key\\\":\\\"5b449757-7d4f-44ee-af26-05301ea5384c\\\",
\\\"prjRef\\\":\\\"dd6f0ae0-68e6-4651-8578-8a4307e4612b\\\",
\\\"fltRef\\\":\\\"1c5d07ce-189a-4a97-8066-d2c72aaa7494\\\",
\\\"orgRef\\\":\\\"38a3861b-573a-43fc-94ed-4ad8d639ff80\\\",
\\\"scope\\\":1,
\\\"vecType\\\":1
}\"
},
\"score\":0.694824964
}
]
}let vectorQuery = await VEC_BAKED_CONTENT_INDEX.query(
vectors, {
topK: 3,
filter: {
prjRef: contentQueryDataType.projectRef
},
returnValues: true,
returnMetadata: true
});let newMetaData1: MetadataSchemaD1 = {
d1Key: contentData.d1Key,
prjRef: contentData.projectRef,
fltRef: contentData.fleetRef,
orgRef: contentData.organizationRef,
scope: contentData.vectorScope,
vecType: VectorMetaType.CONTENT
}
const metaRecord1: Record<string, VectorizeVectorMetadata> = {
"data": JSON.stringify(newMetaData1)
};env.VECTORIZE_INDEX.upsert(vectors);curl --request POST \
--url https://api.cloudflare.com/client/v4/accounts/account_identifier/vectorize/indexes/index_name/upsert \
--header 'Authorization: Bearer undefined' \
--header 'Content-Type: application/x-ndjson' \
--data @/path/to/vectors.ndjsongetByIds()[ Object, Object ]const limitChunk = 5; // 20 * 5 = 100 ids
const results = [];
for (let cChunck = 1; cChunck <= limitChunk; cChunck++) {
const ids = Array.from({ length: 20 }, (_, i) =>
(20 * (cChunck - 1) + (i + 1)).toString(),
);
const result = await env.VECTORIZE_INDEX.getByIds(ids);
results.push(result);
}
const vectors = results.map((arr) => arr.map(({ values, ...rest }) => rest));