@everyone Qwen Image 2511 is truly a massive upgrade compared to 2509. Full step by step how to use tutorial published and i have compared as well https://youtu.be/YfuQuOk2sB0 If you can upvote, leave a comment I appreciate that: https://www.reddit.com/r/comfyui/comments/1pv9snm/qwen_image_edit_2511_is_a_massive_upgrade/
Furkan Gözükara SECourses · 2d ago
@everyone After doing massive research our Wan 2.2 LoRA training tutorial is ready and published thankfully https://youtu.be/ocEkhAsPOs4 If you can upvote, leave a comment I appreciate that: https://www.reddit.com/r/comfyui/comments/1pscwvr/wan_22_complete_training_tutorial_text_to_image/
Furkan Gözükara SECourses · 6d ago
@everyone After doing massive research our Z Image Turbo LoRA training tutorial is ready and published thankfully https://youtu.be/ezD6QO14kRc If you can upvote, leave a comment I appreciate that: https://www.reddit.com/r/comfyui/comments/1pedr0v/zimage_turbo_lora_training_with_ostris_ai_toolkit/
Furkan Gözükara SECourses · 4w ago



Traceback (most recent call last):
File "C:\AI\WAN\Wan2.1\venv\lib\site-packages\gradio\queueing.py", line 625, in process_events
response = await route_utils.call_process_api(
File "C:\AI\WAN\Wan2.1\venv\lib\site-packages\gradio\route_utils.py", line 322, in call_process_api
output = await app.get_blocks().process_api(
File "C:\AI\WAN\Wan2.1\venv\lib\site-packages\gradio\blocks.py", line 2108, in process_api
result = await self.call_function(
File "C:\AI\WAN\Wan2.1\venv\lib\site-packages\gradio\blocks.py", line 1655, in call_function
prediction = await anyio.to_thread.run_sync( # type: ignore
File "C:\AI\WAN\Wan2.1\venv\lib\site-packages\anyio\to_thread.py", line 56, in run_sync
return await get_async_backend().run_sync_in_worker_thread(
File "C:\AI\WAN\Wan2.1\venv\lib\site-packages\anyio\_backends\_asyncio.py", line 2461, in run_sync_in_worker_thread
return await future
File "C:\AI\WAN\Wan2.1\venv\lib\site-packages\anyio\_backends\_asyncio.py", line 962, in run
result = context.run(func, *args)
File "C:\AI\WAN\Wan2.1\venv\lib\site-packages\gradio\utils.py", line 890, in wrapper
response = f(*args, **kwargs)
File "C:\AI\WAN\Wan2.1\App.py", line 1315, in generate_videos
video_data = loaded_pipeline(
File "C:\AI\WAN\Wan2.1\venv\lib\site-packages\torch\utils\_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
TypeError: WanVideoPipeline.__call__() got an unexpected keyword argument 'tea_cache_l1_thresh'