Hi, Issac. Is there a way to get rough estimation of neuron usage for a single stable diffusion infe
Hi, Issac. Is there a way to get rough estimation of neuron usage for a single stable diffusion inference?
@hf/thebloke/llamaguard-7b-awq there is a bit outdated, still uses llama 2 and it's not very smart, what about upgrading it to https://huggingface.co/meta-llama/Llama-Guard-3-8B which uses llama 3.1? And while at it perhaps also add https://huggingface.co/meta-llama/Prompt-Guard-86M 
ai.run() request?
TypeError: The ReadableStream has been locked to a reader. prevent updateRecentImages workstop_p or repetition_penalty value to 0 causes Cloudflare API Errordata: [DONE] event, 500 "Cloudflare API error" top_p & repetition_penalty is 0, so ideally we shouldn't get any error..@cf/meta/llama-3.1-8b-instruct-fp8 has 32k token limit

const embeddingResult = await env.AI.run('@cf/baai/bge-large-en-v1.5', {
text: value,
});
const embeddingBatch: number[][] = embeddingResult.data;
await env.VECTORIZE.upsert(
embeddingBatch.map((embedding, index) => ({
id: sourceId,
values: embedding,
namespace: 'default',
metadata: {
id: sessionId
},
}))
);export default {
async fetch(request, env) {
const inputs = {
prompt: "create an image that is 512x512. the background should be a solid, plain, yellow color. text over the background should say 'Learn How to Pronounce MySQL' in English. Text should be red and use an Arial font. ",
negative_prompt: "There shOuld not be any other effects or images.",
height: 512,
width: 1024
};
const response = await env.AI.run(
"@cf/bytedance/stable-diffusion-xl-lightning",
inputs
);
return new Response(response, {
headers: {
"content-type": "image/png",
},
});
},
};@hf/thebloke/llamaguard-7b-awqai.run()const response = await env.AI.run('@cf/meta/llama-2-7b-chat-int8', {
prompt: "tell me a joke about cloudflare";
});TypeError: The ReadableStream has been locked to a reader.top_ptop_prepetition_penaltyrepetition_penaltyCloudflare API Errordata: [DONE]500 "Cloudflare API error"const response = await ai.run(model || "@cf/stabilityai/stable-diffusion-xl-base-1.0", requestInput);
// Store the image name in R2, in background
ctx.waitUntil(updateRecentImages(imageName, (await generateThumbs(imageName, '400x', true)), input, env, response));
return new Response(response, {
headers: {
"content-type": "image/png",
},
});{
"errors": [
{
"message": "Server Error",
"code": 6001
}
],
"success": false,
"result": {},
"messages": []
}